Finance Formulas

Unit 1

$$Return = \frac{P_{t+1} + D_{t+1} - P_t}{P_t}$$

 $P_{t+1} = Price in the future (Future Cash Flow)$

 $D_{t+1} = Payouts in the future (dividends, coupons, etc.)$

 $P_t = Price \ today \ (Present \ Value)$

Time Value of Money:

Present Value (PV) =
$$\frac{FV}{(1+r)^n}$$
 = $FV * \frac{1}{(1+r)^n}$

Discount Factor =
$$\frac{1}{(1+r)^n}$$

Future Value (FV) = $PV(1+r)^n$

$$n = \frac{\ln{(\frac{FV}{PV})}}{\ln{(1+r)}}$$

$$r = \left(\frac{FV}{PV}\right)^{1/n} - 1$$

Time Value of Money Multiple Time Periods:

$$PV = \sum_{i=1}^{n} \frac{FV_i}{(1+r)^n}$$

$$FV = \sum_{i=1}^{n} PV_i * (1+r)^n$$

Adjusting TVM formulas for multiple compounding periods per year:

r/m

n*m

If there's a PMT: pmt/m

m = Number of periods per year

Unit 2

$$DCF_{pv} = \sum \frac{Cash\ Flow_n}{(1+r)^n} = \sum Cash\ Flow_n * \frac{1}{(1+r)^n} = \sum PV_n$$

$$DCF_{fv} = \sum Cash Flow_n (1+r)^n = \sum FV_n$$

Annuity PV =
$$C\left(\frac{1 - \frac{1}{(1+r)^n}}{r}\right)$$

Peretuity PV = C/r

Growing Annuity PV =
$$C\left(\frac{1 - \left(\frac{(1+g)}{(1+r)}\right)^n}{(r-g)}\right)$$

Growing Peretuity PV = C/(r-g)

$$EAR = \left(1 + \frac{PR}{m}\right)^m - 1$$

$$APR = PR * m$$

PR = Periodic Rate

m = Number of periods per year

Unit 3

$$Bond_{value} = \sum \frac{Coupon_n}{(1+YTM)^n} + \frac{Par_N}{(1+YTM)^n}$$

Bond to TVM terminology:

Maturity= n

Yield to Maturity=r

Coupon= PMT

Fisher Effect:

Simple: $r_n = r_r + i$

Compound: $(1+r_n) = (1+r_r)*(1+i)$

Duration =
$$\frac{\sum N*\frac{CF_N}{(1+YTM)^n}}{\sum \frac{CF_N}{(1+YTM)^n}}$$

Gordon Growth Model (Dividend Growth Model)

$$P_t = D_{t+1}/(r-g)$$

 $P_t = Stock \ Price \ today$

 $D_{t+1} = Dividend in t + 1$

r= discount rate

g= dividend growth rate

If g=0, then

$$P_t = D/r$$

Expected Return from GG Model:

$$r = \frac{D_{t+1}}{P_t} + g$$

$$\frac{D_{t+1}}{P_t}$$
=dividend yield

g= capital gains yield

Nonconstant Growth Formula (MUCH easier to use a cash flow table)

$$P_t = \frac{D_{t+1}}{r - g_1} * \left(1 - \left(\frac{1 + g_1}{1 + r}\right)^n\right) + \frac{P_T}{r - g_2}$$

$$P_T = \frac{D_{t+n}}{r - g_2} = \frac{D_t * (1 + g_1)^n * (1 + g_2)}{r - g_2}$$

Unit 4

$$Arithmetic\ Average(Mean) = \frac{\sum_{n=1}^{N} r_n}{N}$$

 $r_n = nth \ return$

N = Total Number of Observations

Geometric Average(Mean) =
$$(\prod_{n=1}^{N} (1+r_n))^{(1/N)}$$
-1

Equal-Weighted Returns

Just the average that was calculated

Value-Weighted Returns= $\sum_{n=1}^{N} r_n^* w_n$

 $w_n = Weight of Security n$

$$Variance(\sigma^2) = \frac{\sum_{n=1}^{N} (r_n - \bar{r})}{N-1}$$

 \bar{r} =average return

Measure of dispersion

Standard Deviation
$$(\sigma) = \sqrt{\frac{\sum_{n=1}^{N} (r_n - \bar{r})}{N-1}}$$

Better measure of dispersion

$$Expected\ Return = \sum_{i=1}^{n} p_i * r_i$$

 $p_i = probability of outcome i occurring$

 $r_i = return \ if \ outcome \ i \ occurs$

Portfolio Weight

Amount of a portfolio held in a particular asset

$$Portfolio\ Weight = \frac{\$\ held\ in\ asset}{\$\ in\ portfolio} = w_i$$

Portfolio Return

Overall return on all the assets in the portfolio

$$Portfolio Return = \sum_{i=1}^{n} w_i * r_i$$

Return = Expected Return + Unexpected Return

Capital Asset Pricing Model (CAPM): $(E(R)) = R_f + \beta(E(R_m) - R_f)$

Where:

E(R) = Expected Return

 $R_f = Risk Free Rate$

$$\beta = Beta (Systematic Risk) = \frac{Covariance(E(R), E(R_m))}{Variance(E(R_m))}$$

 $E(R_m) = Expected Return of the Market$

$$R2R_i = \frac{E(r_i) - r_f}{\beta_i}$$

Unit 5

Operating Cash Flow

Cash generated from a firm's normal business activities

OCF=EBIT+Depreciation-Taxes

Capital Expenditures (Spending)

Money spent on fixed assets net of money received for the sale of fixed assets

Capital Spending=Change in PPE

From BS or CFS

Change in Net Working Capital

 $CNWC = (Current \ Assets_{t+1} - Current \ Liabilities_{t+1}) - (Current \ Assets_t - Current \ Liabilities_t)$

From BS or CFS

Depreciation Tax Shield Free Cash Flow = $(S - VC - FC)(1 - t) + D * t - \Delta NWC - CAPEX$

Where:

S = Sales

VC = Variable Costs, generally Cost of Goods Sold

 $FC = Fixed\ Costs, generally\ Selling, General, \&\ Administrative$

t = Tax Rate of the Firm

D = Depreciation

 $\Delta NWC = Change in Net Working Capital$

= $(Current \ Assets_{t+1} - Current \ Liabilities_{t+1})$

 $-(Current\ Assets_t - Current\ Liabilities_t)$

CAPEX = Capital Expenditures

Bottom up Free Cash Flow = $NI + D - \Delta NWC - CAPEX$

NI= Net Income

Free Cash Flow to Equity = FCF + Net Borrowing

Financial Ratios

Short-term solvency (Liquidity) Ratios

Reflects how easily a firm's short-term assets can cover short-term obligations

The higher the Liquidity Ratio, the easier it will be to cover

$$Current\ Ratio = \frac{Current\ Assets}{Current\ Liabilites}$$

$$Quick\ Ratio\ = \frac{Current\ Assets - Inventory}{Current\ Liabilites}$$

$$Cash Ratio = \frac{Cash}{Current \ Liabilites}$$

Long-Term Solvency Ratios

Reflects how easily a firm's assets can cover long-term obligations

The higher the Solvency Ratio, the easier it will be to cover

$$Total\ Debt\ Ratio = \frac{Total\ Assets\ - Total\ Equity}{Total\ Liabilites}$$

$$TIE = \frac{EBIT}{Interest}$$

$$Cash\ Coverage\ Ratio = \frac{EBIT + Depreciation}{Interest}$$

Asset Management

Reflects how efficient a firm uses its assets

Higher the ratio, the more efficiently used (some exceptions)

$$Inventory \, Turnover = \frac{Cost \, of \, Goods \, Sold}{Inventory}$$

$$Days'Sales\ in\ Inventory = \frac{365\ Days}{Inventory\ Turnover}$$

Lower the better

$$Receivables \ Turnover = \frac{Sales}{Accounts \ Receivable}$$

Days'Sales in Receivables =
$$\frac{365 \text{ Days}}{\text{Receivables Turnover}}$$

The lower the better

$$Total \ Asset \ Turnover = \frac{Sales}{Total \ Assets}$$

Profitability

Reflects how relatively high a firm's bottom line is relative to a base input

Efficiency of generating profits

The higher, the better

$$PM = \frac{Net\ Income}{Sales}$$

$$ROA = \frac{Net\ Income}{Total\ Assets}$$

$$ROE = \frac{Net\ Income}{Total\ Equity}$$

Market Value Ratios

$$EPS = \frac{Net \, Income}{\# \, Shares \, Outstanding}$$

$$PE = \frac{Price\ per\ Share}{Earnings\ per\ Share}$$

$$PS = \frac{Price\ per\ Share}{Sales\ per\ Share}$$

$$MB = \frac{Market \, Value \, per \, Share}{Book \, Value \, per \, Share}$$

Determinants of Profitability and Growth

DuPont Identity: ROE=
$$\frac{Net\ Income}{Sales} * \frac{Sales}{Assets} * \frac{Assets}{Total\ Equity}$$

$$DPR = \frac{\textit{Cash Dividends}}{\textit{Net Income}}$$

$$RR(b) = \frac{\textit{Addition to Retained Earnings}}{\textit{Net Income}}$$

Internal Growth Rate =
$$\frac{ROA*b}{1-ROA*b}$$

Sustainable Growth Rate =
$$\frac{ROE*b}{1-ROE*b}$$

Unit 6

Net Present Value= $\frac{\sum_{i=1}^{n} FCF_{i}}{(1+r)^{i}} - Capital Expenditures (startup cost)$

Internal Rate of Return= irr function

$$Profitability\ Index = \frac{PV(Cash\ Flows)}{Initial\ Investment}$$

PP=(Average Cash Flow)/(Start-up Cost) (if constant CFs)=# years to recoup + leftover/last year CF

Weight Average Cost of Capital
$$=$$
 $\left(\frac{E}{V}\right)r_e + \left(\frac{D}{V}\right)r_d(1-t)$

Where:

E = Market Value of Equity

D = Market Value of Debt

 $V = Market \ Value \ of \ the \ Firm = E + D$

 $r_e = Cost \ of \ Equity$

 $r_d = Cost \ of \ Debt$

t = Tax Rate

$$Reward - to - Risk = \frac{E(r) - r_f}{\beta}$$